All Terrain Rescue Robot PVC


The Goal of this All Terrain Rescue Robot

This All Terrain Rescue Robot is built by [altapowderdog], which competed in the Rescue Robot Challenge. The goal was to build a remote controlled vehicle that is able to navigate in a field filled with all sorts of obstacles and retrieve the table-tennis ball.

Original post from: http://letsmakerobots.com/user/17297

All Terrain Rescue Robot

Here is the video in that competition.

Design

[altapowderdog] talked about his design on his robot page.

One key element to any robot is a versatile platform. I have chosen not to buy a kit-based platform but instead build a custom one, which is incredibly powerful for its weight. The construction is mostly PVC plastic, and in order to save weight the frame has holes cut out in areas not key to the structural integrity. 
The platform uses a rotary walker mechanism for locomotion. To my knowledge, there are no well documented robots that use this type of locomotion, and as a result a lot of work went into refining the basic idea before a working model could be built. The advantages, however, were worth the time. The rotary walker mechanism gives the robot a large surface area that has contact with the ground.
This spreads the robots weight evenly, allowing it to quickly cross shifting and unstable terrain such as the pea gravel in the playing field. The extra contact area also aids in climbing up the steep incline on the course. The robot also has a motorized “tail” which can lift the back of the robot up to help in climbing tall obstacles such as the 6-inch wall. In addition to impressive capabilities, the platform is also simple and durable. Because of the design, rocks and debris do not get jammed into the mechanism as they often do with treads. Also, two motors drive each side, so if one experiences failure the other motor can still drive the mechanism without problems.

All Terrain Rescue Robot

Mounted to the platform is an arm with an equal amount of innovative touches. This arm can rotate a full 360 degrees, as well as raise and lower. The servo that rotates the arm is geared down to allow for precise control, and the 4 joint mechanism which raises and lowers keeps the claw level with the ground at all heights. To make the robot versatile, the rotating part of the arm contains mounting points that allow the existing claw to be easily swapped for a different one.The claw for this robot is designed to be able to pick up a ping-pong ball easily without precise positioning, and yet still very precisely drop the ball on the place pylon. It can do this because the claw opens in two ways. One swings the claw wide open, which is ideal for picking up a ping-pong ball on a pick pylon because when it closes from this position any ball in the general area will be snatched. The second way that the claw can open is a more gentle motion where each half of the claw opens slightly then swings up and out of the way. This is ideal for placing the ball on the drop pylon without knocking all the other balls off. The dual-opening mechanism is driven by two regular servos with just 90 degrees of rotation; it is a clever hinge mechanism that allows for a complex motion despite limited servo movement.

To control all of the robot’s functions a simple Play Station controller is used. This is familiar to many people, meaning a complete novice can learn to accurately control the robot in a short time. The real time camera allows the robot to be controlled out of sight and in tight places such as the “cave” where the robot is not visible to the operator. The image from the camera is displayed on a portable color monitor. A bright LED light allows the camera to still be useful when the area is dark, and a fish eye lens allows the operator to see more of the surroundings in the display. To help make controlling the robot over the camera even easier a red colored LED shines on the area below the claw, so if a ping-pong ball is the correct distance away for retrieval the ball will be lit up red. To power the robot a RC airplane lithium polymer battery is used, which is very lightweight. One charge lasts about twenty minutes per battery, and because this robot uses a standard connector plug a higher capacity battery can easily by swapped in if more duration is required. This robot is easy to operate, versatile, and costs under 300 dollars, which is significantly less then the competition.

Share Button

Leave a Reply